Czym jest system dwójkowy?
Dwójkowy system liczbowy, system binarny – pozycyjny system liczbowy, w którym podstawą jest liczba 2. Do zapisu liczb potrzebne są tylko dwie cyfry: 0 i 1
.
Inne cyfry?
Wyjaśnijmy to sobie się zaraz wszystko na konkretnym przykładzie. Weźmy na przykład kilka pierwszych liczb naszego systemu dziesiętnego. Będziemy je konwertować na system dwójkowy, zwany również binarnym. Pierwsza liczba w naszym systemie to 0 (zero). W systemie dwójkowym, liczba ta również jest równa 0, gdyż istnieje tam taka cyfra. Kolejna liczba to 1 (jeden). W systemie dwójkowym, również taka cyfra istnieje, więc zapisujemy 1. Kolejna liczba to 2 (dwa). Wiemy, że nie istnieje tam taka cyfra, więc dodajemy kolejną pozycję, a pozycję wysuniętą na prawo, zerujemy. Zatem liczba 2 w systemie dziesiętnym ma postać "10" w systemie dwójkowym. Bynajmniej nie jest to "dziesięć" tylko "jeden, zero". Kolejne liczby w systemie dziesiętnym to: 3, 4, 5, 6, 7, 8, 9 itd. W systemie dwójkowym wyglądają one odpowiednio: 11, 100, 101, 110, 111, 1000, 1001. Jak widzimy, zasada jest cały czas taka sama.Zamiana liczby dziesiętnej na dwójkową
Gdybyśmy liczyli na piechotę, byśmy musieli sprawdzać kolejne wielokrotności liczby 2. Sposób ten raczej jest mało stosowany, zajmijmy się trochę lepszym. Jest to prosty sposób, wcale nie wymaga myślenia. Najpierw bierzemy liczbę, jaką chcemy skonwertować na zapis dwójkowy. Weźmy liczbę z poprzedniego rozdziału i sprawdźmy, czy nam się to zgadza. Zatem, liczba którą będziemy konwertować to 67. Sposób jest następujący: liczbę dzielimy przez 2 i jeżeli wynik będzie z resztą: zapisujemy 1, jeżeli nie - zapisujemy 0. Następnie znowu dzielimy przez 2 to co zostało z liczby, ale bez reszty. Taki proces trwa, aż zostanie 0 (zero). Otrzymane zera i jedynki zapisujemy w odwrotnej kolejności. Wyjaśni się to wszystko na konkretnym przykładzie. Zatem do dzieła:
67 | | :2 | 1 | |
33 | | :2 | 1 | |
16 | | :2 | 0 | |
8 | | :2 | 0 | |
4 | | :2 | 0 | |
2 | | :2 | 0 | |
1 | | :2 | 0 |
Co daje 1000011. Jak widzimy, wynik zgadza się. Widać również, że zawsze na samym końcu po podzieleniu będzie 0, zatem ostatnia liczba jest równa 1. Jeden podzielić na dwa zawsze wyjdzie 0,5 zatem wynik z resztą. Co za tym idzie - pierwsza cyfra w zapisie dwójkowym jest ZAWSZE RÓWNA 1. Nie tylko matematycznie można to udowodnić. W elektronice, również musi być taka postać rzeczy. Przyjęliśmy bowiem, że dla komputera brak przepływu prądu oznacza "0", natomiast przepływ prądu - "1". Sygnał zatem nie może zaczynać się od "0", gdyż jest to brak sygnału. Procesor nie wie, czy sygnał już się zaczął, czy jeszcze nie. Początek musi być "1" (jest sygnał).Jeżeli rozumiesz - zapraszam dalej.
Zamiana liczby dwójkowej na dziesiętną
Otóż nie jest to zbyt skomplikowane. Przypomnijcie sobie sposób z liczbami w systemie ósemkowym. Tu oczywiście robimy to analogicznie tak samo, z tym, że podstawą jest naturalnie liczba 2. Weźmy sobie zatem jakąś liczbę zapisaną w systemie dwójkowym, np. 1000011. Jak już wcześniej mówiliśmy, zaczynamy od cyfr najsłabszych, czyli wysuniętych najbardziej na prawo. Najbardziej na prawo wysunięta jest cyfra 1, a więc tak jak poprzednio mnożymy ją przez podstawę systemu z odpowiednią potęgą. Podstawą systemu jest 2. Zatem, cała konwersja ma postać: 1*20 + 1*21 + 0*22 + 0*23 +0*24 + 0*25 +1*26, a to się równa: 1 + 2 + 0 + 0 + 0 + 0 + 64, czyli jest to 67 w systemie dziesiętnym. Moje gratulację - udało się skonwertować liczbę w zapisie dwójkowym na zapis dziesiętny. Teraz dobrze by było gdybyś przeanalizował sobie dokładnie powyższą konwersję. Jeżeli jej nie rozumiesz - przeczytaj jeszcze raz.
Po co to w ogóle?

To wszystko na dziś:) Mam nadzieję że pomogłem.Jeśli macie pytania piszcie w komentarzach ;)!
Brak komentarzy:
Prześlij komentarz
Uważaj co piszesz,Devon patrzy ;)